Contamination of Groundwater vs. GTG Independent Water Test

Copyright Green Technology Global, Inc. 2023

Contaminants Found in Groundwater Contaminants can be natural or human-induced

<u>Groundwater</u> will normally look clear and clean because the ground naturally filters out particulate matter. But natural and human-induced chemicals can be found in groundwater. As <u>groundwater flows through the ground</u>, metals such as iron and manganese are dissolved and may later be found in high concentrations in the water.

Industrial discharges, urban activities, agriculture, groundwater pumpage, and disposal of waste all can affect groundwater quality. Contaminants can be human-induced, as from leaking fuel tanks or toxic chemical spills. **Pesticides** and fertilizers applied to lawns and crops can accumulate and migrate to the **water table**. Leakage from septic tanks and/or waste-disposal sites also can introduce bacteria to the water, and pesticides and fertilizers that seep into farmed soil can eventually end up in water drawn from a well. Or a well might have been placed in land that was once used for something like a garbage or chemical dump site. (United States Geological Survey, 2018)

Contaminant	Sources to groundwater	Potential health and other effects
Aluminum	Occurs naturally in some rocks and drainage from mines.	Can precipitate out of water after treatment, causing increased turbidity or discolored water.
Antimony	Enters environment from natural weathering, industrial production, municipal waste disposal, and manufacturing of flame retardants, ceramics, glass, batteries, fireworks, and explosives.	Decreases longevity, alters blood levels of glucose and cholesterol in laboratory animals exposed at high levels over their lifetime.
Arsenic	Enters environment from natural processes, industrial activities, pesticides, and industrial waste, smelting of copper, lead, and zinc ore.	Causes acute and chronic toxicity, liver and kidney damage; decreases blood hemoglobin. A carcinogen.
Barium	Occurs naturally in some limestones, sandstones, and soils in the eastern United States.	Can cause a variety of cardiac, gastrointestinal, and neuromuscular effects. Associated with hypertension and cardiotoxicity in animals.
Beryllium	Occurs naturally in soils, groundwater, and surface water. Often used in electrical industry equipment and components, nuclear power and space industry. Enters the environment from mining operations, processing plants, and improper waste disposal. Found in low concentrations in rocks, coal, and petroleum and enters the ground.	Causes acute and chronic toxicity; can cause damage to lungs and bones. Possible carcinogen.
Cadmium	Found in low concentrations in rocks, coal, and petroleum and enters the groundwater and surface water when dissolved by acidic waters. May enter the environment from industrial discharge, mining waste, metal plating, water pipes, batteries, paints and pigments, plastic stabilizers, and landfill leachate.	Replaces zinc biochemically in the body and causes high blood pressure, liver and kidney damage, and anemia. Destroys testicular tissue and red blood cells. Toxic to aquatic biota.
Chloride	May be associated with the presence of sodium in drinking water when present in high concentrations. Often from saltwater intrusion, mineral dissolution, industrial and domestic waste.	Deteriorates plumbing, water heaters, and municipal water- works equipment at high levels.
Chromium	Enters environment from old mining operations runoff and leaching into groundwater, fossil-fuel combustion, cement-plant emissions, mineral leaching, and waste incineration. Used in metal plating and as a cooling-tower water additive.	Chromium III is a nutritionally essential element. Chromium VI is much more toxic than Chromium III and causes liver and kidney damage, internal hemorrhaging, respiratory damage, dermatitis, and ulcers on the skin at high concentrations.

Contaminant	Sources to groundwater	Potential health and other effects
Copper	Enters environment from metal plating, industrial and domestic waste, mining, and mineral leaching.	Can cause stomach and intestinal distress, liver and kidney damage, anemia in high doses. Imparts an adverse taste and significant staining to clothes and fixtures. Essential trace element but toxic to plants and algae at moderate levels.
Cyanide	Often used in electroplating, steel processing, plastics, synthetic fabrics, and fertilizer production; also from improper waste disposal.	Poisoning is the result of damage to spleen, brain, and liver.
Dissolved Solids	Occur naturally but also enters environment from man-made sources such as landfill leachate, feedlots, or sewage. A measure of the dissolved "salts" or minerals in the water. May also include some dissolved organic compounds.	May have an influence on the acceptability of water in general. May be indicative of the presence of excess concentrations of specific substances not included in the Safe Water Drinking Act, which would make water objectionable. High concentrations of dissolved solids
Fluoride	Occurs naturally or as an additive to municipal water supplies; widely used in industry.	Decreases incidence of tooth decay but high levels can stain or mottle teeth. Causes crippling bone disorder (calcification of the bones and joints) at very high levels.
Hardness	Result of metallic ions dissolved in the water; reported as concentration of calcium carbonate. Calcium carbonate is derived from dissolved limestone or discharges from operating or abandoned mines.	Decreases the lather formation of soap and increases scale formation in hot-water heaters and low-pressure boilers at high levels.
Iron	Occurs naturally as a mineral from sediment and rocks or from mining, industrial waste, and corroding metal.	Imparts a bitter astringent taste to water and a brownish color to laundered clothing and plumbing fixtures.
Lead	Enters environment from industry, mining, plumbing, gasoline, coal, and as a water additive.	Affects red blood cell chemistry; delays normal physical and mental development in babies and young children. Causes slight deficits in attention span, hearing, and learning in children. Can cause slight increase in blood pressure in some adults. Probable carcinogen.
Manganese	Occurs naturally as a mineral from sediment and rocks or from mining and industrial waste.	Causes aesthetic and economic damage, and imparts brownish stains to laundry. Affects taste of water, and causes dark brown or black stains on plumbing fixtures. Relatively non-toxic to animals but toxic to plants at high levels.
Mercury	Occurs as an inorganic salt and as organic mercury compounds. Enters the environment from industrial waste, mining, pesticides, coal, electrical equipment (batteries, lamps, switches), smelting, and fossil-fuel combustion.	Causes acute and chronic toxicity. Targets the kidneys and can cause nervous system disorders.

Contaminant	Sources to groundwater	Potential health and other effects
Nickel	Occurs naturally in soils, groundwater, and surface water. Often used in electroplating, stainless steel and alloy products, mining, and refining.	Damages the heart and liver of laboratory animals exposed to large amounts over their lifetime.
Nitrate (as nitrogen)	Occurs naturally in mineral deposits, soils, seawater, freshwater systems, the atmosphere, and biota. More stable form of combined nitrogen in oxygenated water. Found in the highest levels in groundwater under extensively developed areas. Enters the environment from fertilizer, feedlots, and sewage.	Toxicity results from the body's natural breakdown of nitrate to nitrite. Causes "bluebaby disease," or methemoglobinemia, which threatens oxygen-carrying capacity of the blood.
Nitrite (combined nitrate/nitrite)	Enters environment from fertilizer, sewage, and human or farm-animal waste.	Toxicity results from the body's natural breakdown of nitrate to nitrite. Causes "bluebaby disease," or methemoglobinemia, which threatens oxygen-carrying capacity of the blood.
Selenium	Enters environment from naturally occurring geologic sources, sulfur, and coal.	Causes acute and chronic toxic effects in animals"blind staggers" in cattle. Nutritionally essential element at low doses but toxic at high doses.
Silver	Enters environment from ore mining and processing, product fabrication, and disposal. Often used in photography, electric and electronic equipment, sterling and electroplating, alloy, and solder. Because of great economic value of silver, recovery practices are typically used to minimize loss.	Can cause argyria, a blue-gray coloration of the skin, mucous membranes, eyes, and organs in humans and animals with chronic exposure.
Sodium	Derived geologically from leaching of surface and underground deposits of salt and decomposition of various minerals. Human activities contribute through de-icing and washing products.	Can be a health risk factor for those individuals on a low- sodium diet.
Sulfate	Elevated concentrations may result from saltwater intrusion, mineral dissolution, and domestic or industrial waste.	Forms hard scales on boilers and heat exchangers; can change the taste of water, and has a laxative effect in high doses.
Thallium	Enters environment from soils; used in electronics, pharmaceuticals manufacturing, glass, and alloys.	Damages kidneys, liver, brain, and intestines in laboratory animals when given in high doses over their lifetime.
Zinc	Found naturally in water, most frequently in areas where it is mined. Enters environment from industrial waste, metal plating, and plumbing, and is a major component of sludge.	Aids in the healing of wounds. Causes no ill health effects except in very high doses. Imparts an undesirable taste to water. Toxic to plants at high levels.

Organic contaminants found in groundwater

Contaminant	Sources to groundwater	Potential health and other effects
Volatile organic compounds	Enter environment when used to make plastics, dyes, rubbers, polishes, solvents, crude oil, insecticides, inks, varnishes, paints, disinfectants, gasoline products, pharmaceuticals, preservatives, spot removers, paint removers, degreasers, and many more.	Can cause cancer and liver damage, anemia, gastrointestinal disorder, skin irritation, blurred vision, exhaustion, weight loss, damage to the nervous system, and respiratory tract irritation.
Pesticides	Enter environment as herbicides, insecticides, fungicides, rodenticides, and algicides.	Cause poisoning, headaches, dizziness, gastrointestinal disturbance, numbness, weakness, and cancer. Destroys nervous system, thyroid, reproductive system, liver, and kidneys.
Plasticizers, chlorinated solvents, benzo[a]pyrene, and dioxin	Used as sealants, linings, solvents, pesticides, plasticizers, components of gasoline, disinfectant, and wood preservative. Enters the environment from improper waste disposal, leaching runoff, leaking storage tank, and industrial runoff.	Cause cancer. Damages nervous and reproductive systems, kidney, stomach, and liver.

Microbiological contaminants found in groundwater

Contaminant	Sources to groundwater	Potential health and other effects
		Bacteria, viruses, and parasites can cause polio, cholera, typhoid fever, dysentery, and infectious hepatitis.

Physical characteristics of groundwater

Contaminant	Sources to groundwater	Potential health and other effects
Turbidity	Caused by the presence of suspended matter such as clay, silt, and fine particles of organic and inorganic matter, plankton, and other microscopic organisms. A measure how much light can filter through the water sample.	Objectionable for aesthetic reasons. Indicative of clay or other inert suspended particles in drinking water. May not adversely affect health but may cause need for additional treatment. Following rainfall, variations in groundwater turbidity may be an indicator of surface contamination.
Color	Can be caused by decaying leaves, plants, organic matter, copper, iron, and manganese, which may be objectionable. Indicative of large amounts of organic chemicals, inadequate treatment, and high disinfection demand. Potential for production of excess amounts of disinfection byproducts.	Suggests that treatment is needed. No health concerns. Aesthetically unpleasing.
рН	Indicates, by numerical expression, the degree to which water is alkaline or acidic. Represented on a scale of 0-14 where 0 is the most acidic, 14 is the most alkaline, and 7 is neutral.	High pH causes a bitter taste; water pipes and water- using appliances become encrusted; depresses the effectiveness of the disinfection of chlorine, thereby causing the need for additional chlorine when pH is high. Low-pH water will corrode or dissolve metals and other substances.
Odor	Certain odors may be indicative of organic or non- organic contaminants that originate from municipal or industrial waste discharges or from natural sources.	
Taste	Some substances such as certain organic salts produce a taste without an odor and can be evaluated by a taste test. Many other sensations ascribed to the sense of taste actually are odors, even though the sensation is not noticed until the material is taken into the mouth.	

GTG INDEPENDENT WATER PURITY TEST

INTERFIELD LAP	BORATORII	S Page 1 of
		CERTIFICATE OF ANALYSIS ORIGINAL
ULR - TC63382100000340		No. KH 41576 / 202 08, INTERPRINT HOUSE, KARUVELIPADY, KOCHI - 682005, KERAL
CUSTOMER NAME & ADI	DRESS	DATE OF ISSUE : 17-03-2021
On behalf of Green Technology Globa 435 E.Hawley #994, Mundelein, IL 600		SAMPLE RECEIPT: 18-01-2021SAMPLE CODE: KH/21/23351/C79168ANALYSIS STARTED: 18-01-2021ANALYSIS COMPLETED: 30-01-2021
INFORMATION PROVIDED BY CUSTOMER SAMPLE NAME BRAND	: WATER : GTG - ATMOSPHER	IC WATER GENERATOR
OTHER INFORMATION CONDITION OF SAMPLE SAMPLED BY SAMPLE DRAWN FROM DATE OF SAMPLING SAMPLING LOCATION	: RECEIVED IN GOO : Mr. LALU THOMAS : ATMOSPHERIC WA : 18.01.2021 : KOCHI, KERALA,	(Authorized sampler of Interfield Laboratories) as per IFL/MSP/7.3/02-G TER GENERATOR

SL NO.	PARAMETER TESTED	UNIT OF MEASUREMENT	REQUIREMENT (ACCEPTABLE LIMIT)	PERMISSIBLE UMIT IN THE ABSENCE OF ALTERNATE SOURCE	TEST RESULT	UMIT OF QUANTIFICATION (LOQ)	TEST METHOD
1	COLOUR	Hazen	Max 5	Max 15	1	1	IS 3025 (Part 4) : 1983, <u>Reaff</u> . 2002
2	ODOUR		AGREEABLE	AGREEABLE	Agreeable	-	IS 3025 (Part 5) : 2018
3	pH VALUE	pH units	6.5 to 8.5	6.5 to 8.5	7.63 at 25° C	1	IS 3025 (Part 11) 1983, <u>Reaff</u> . 2002
4	TASTE		AGREEABLE	AGREEABLE	Agreeable		IS 3025 (Part 8): 1984, <u>Reaff</u> . 2002
5	TURBIDITY	NTU	Max 1	Max 5	< 1	1	IS 3025 (Part 10): 1984, <u>Reaff</u> . 2002
6	TOTAL DISSOLVED SOLIDS	mg/I	Max 500	Max 2000	27.0	10	IS 3025 (Part 16) : 1984, Reaff, 2006
7	ALUMINIUM (as Al)	mo/l	Max 0.03	Max 0.2	< 100	0.02	IFL C/OSP W/010
8	AMMONIA (as Total Ammonia - N)	mg/I	Max 0.5	Max 0.5	< <u>LOQ</u>	0.1	IFL C/QSP W/026
9	ANIONIC DETERGENTS (as MBAS)	mg/I	Max 0.2	Max 1.0	< LOQ	0.1	Annex - K of IS 13428: 2005
10	BARIUM (as Ba)	mg/I	Max 0.7	Max 0.7	< LOQ	0.0005	APHA 23rd Ed. 3125
11	BORON (as 8)	mg/l	Max 0.5	Max 2.4	< LOQ	0.2	Annex - H of IS 13428: 2005
12	CALCIUM (as Ca)	mg/l	Max 75	Max 200	< LOQ	2	IS 3025 (Part 40) 1991, Reaff. 2009
13	CHLORAMINES (as Cl ₂)	mg/I	Max 4.0	Max 4.0	< LOQ	0.1	APHA 23rd Ed. 4500 CI-G

ULR - TC633821000003408F

I. CH	I. CHEMICAL TESTING : Water / Residues in Water								
SL NO.	PARAMETER TESTED	UNIT OF MEASUREMENT	REQUIREMENT {ACCEPTABLE LIMIT)	PERMISSIBLE LIMIT IN THE ABSENCE OF ALTERNATE SOURCE	TEST RESULT	LIMIT OF QUANTIFICATION {LOQ)	TEST METHOD		
14	CHLORIDE (as CI-)	тдЛ	Max 250	Max 1000	< LOQ	5	IS 3025 (Part 32) : 1988, Reaff, 2007		
15	COPPER (as Cu)	m g/l	Max 0.05	Max 1.5	< LOQ	0.0005	APHA 23rd Ed. 3125		
16	FLUORIDE (as F·)	mo/I	Max 1.0	Max 1.5	< L00	0.3	IFL C/OSP W/009		
17	RESIDUAL FREE CHLORINE	m g/l	Min 0.2 (If chlorinated)	Min 1 (If chlorinated)	< LOQ	0.01	IS 3025 (Part 26) : 1986, Reaff, 2003		
18	IRON (as Fe)	m g/l	Max 1.0	Max 1.0	< LOQ	0.0005	APHA 23rd Ed. 3125		
19	MAGNESIUM (as Mg)	m g/l	Max 30	Max 100	< LOQ	0.5	IS 3025 (Part 46) : 1994, <u>Reaff</u> 2003		
20	MANGANESE (as Mn)	m g/l	Max 0.1	Max 0.3	< LOQ	0.0005	APHA 23rd Ed. 3125		
21	MINERAL OIL	m g/l	Max 0.5	Max 0.5	< LOQ	0.1	IS 3025 (Part 39) : 1991, Reaff, 2003		
22	NITRATE (as NO3·)	m g/l	Max 45	Max 45	< LOQ	1	APHA 23rd Ed. 4500 NO. 3-8		
23	PHENOLIC COMPOUNDS (as C6H5OH)	m g/l	Max 0.001	Max 0.002	< LOQ	0.001	IS 3025 (Part 43) : 1992, Reaff, 2003		
24	SELENIUM (as Se)	m g/l	Ma?< 0.01	Max 0.01	< LOQ	0.0005	APHA 23rd Ed. 3125		
25	SILVER (as Ag)	m g/l	Max 0.1	Max 0.1	< LOQ	0.0005	APHA 23rd Ed. 3125		

ULR - TC633821000003408F

No. KH 41576 / 2021

I. CH	I. CHEMICAL TESTING : Water / Residues in Water								
SL NO.	PARAMETER TESTED	UNIT OF MEASUREMENT	REQUIREMENT (ACCEPTABLE LIMIT)	PERMISSIBLE LIMIT IN THE ABSENCE OF ALTERNATE SOURCE	TEST RESULT	LIMIT OF QUANTIFICATION {LOQ)	TEST METHOD		
26	SULPHATE (as SQi)	mg/l	Max 200	Max 400	< LOQ	5	IS 3025 (Part 24) : 1986, Reaff, 2009		
27	SULPHIDE (as H2S)	m g/l	Max 0.05	Max 0.05	< LOQ	0.02	IS 3025 (Part 29) : 1986, Reaff. 2003		
28	TOTAL ALKALINITY (as CaCO ₃)	m g/l	Max 200	Max 600	27.8	5	IS 3025 (Part 23) : 1986, Reaff, 2003		
29	TOTAL HARDNESS (CaCO3)	m g/l	Max 200	Max 600	< LOQ	5	IS 3025 (Part 21) : 2009		
30	ZINC (as Zn)	m g/l	Max 5	Max 15	< LOQ	0.0005	APHA 23rd Ed. 3125		
31	CADMIUM (as Cd)	m g/l	Max 0.003	Max 0.003	< LOQ	0.0005	APHA 23rd Ed. 3125		
32	CYANIDE (as CN-)	ma/I	Max 0.05	Max 0.05	< LOO	0.01	IFL C/OSP W/013		
33	LEAD (as Pb)	m g/l	Max 0.01	Max 0.01	< LOQ	0.0005	APHA 23rd Ed. 3125		
34	MERCURY (as Hg)	m g/l	Max 0.001	Max 0.001	< LOQ	0.0005	APHA 23rd Ed. 3125		
35	MOLYBDENUM (as Mo)	m g/l	Max 0.07	Max 0.07	< LOQ	0.0005	APHA 23rd Ed. 3125		
36	NICKEL (as Ni)	m g/l	Max 0.02	Max 0.02	< LOQ	0.0005	APHA 23rd Ed. 3125		

ULR - TC633821000003408F

No. KH 41576 / 2021

iL 10.	PARAMETER TESTED	UNIT OF MEASUREMENT	REQUIREMENT (ACCEPTABLE LIMIT)	PERMISSIBLE LIMIT IN THE ABSENCE OF ALTERNATE SOURCE	TEST RESULT	LIMIT OF QUANTIFICATION (LOQ)	TEST METHOD
7	PESTICIDES		Chickey Chickey	OTOTIN DUNC			
	1) alpha-HCH	µg/l	Max 0.01	Max 0.01	Not Detected	0.01	USEPA 525.2
	2) beta - HCH	I/pu	Max 0.04	Max 0.04	Not Detected	0.01	USEPA 525.2
	3) gamma- HCH (Lindane)	uq/l	Max 2	Max 2	Not Detected	0.01	USEPA 525.2
	4) delta - HCH	µq/l	Max 0.04	Max 0.04	Not Detected	0.01	USEPA 525.2
	5) Butachlor	uq/l	Max 125	Max 125	Not Detected	0.05	USEPA 525.2
	6) Alachior	I/pu	Max 20	Max 20	Not Detected	0.05	USEPA 525.2
	7) Ethion	µq/I	Max 3	Max 3	Not Detected	0.05	USEPA 525.2
	8) Chlorpyrifos	l/pu	Max 30	Max 30	Not Detected	0.05	USEPA 525.2
	9) Atrazine	uq/l	Max 2	Max 2	Not Detected	0.05	USEPA 525.2
	10) Isoproturon	µq/l	Max 9	Max 9	Not Detected	0.05	USEPA 525.2
	11) Monocrotophos	uq/l	Max 1	Max 1	Not Detected	0.05	USEPA 525.2
	12) Malathion (Sum of malathion and malaoxon)	l/gu	Max 190	Max 190	Not Detected	0.05	USEPA 525.2
	 Methyl parathion (Sum of methyl parathion and methyl paraoxon) 	l/64	Max 0.3	Max 0.3	Not Detected	0.05	USEPA 525.2
	14) Aldrin and Dieldrin	LIQ/I	Max 0.03	Max 0.03	Not Detected	0.01	USEPA 525.2
	 Endosulfan (sum of alpha, beta isomers and sulphate) 	µg/I	Max 0.4	Max 0.4	Not Detected	0.05	USEPA 525.2
	16) DDT (o,p and p,p - isomers of DDT, DDE and DDD)	µg/I	Max 1	Max 1	Not Detected	0.05	USEPA 525.2
	17) 2,4- D	uq/l	Max 30	Max 30	Not Detected	0.1	USEPA 525.2
	18) Phorate (Sum of Phorate, Phorate Sulfoxide & Phorate Sulfone)	µg/l	Max 2	Max 2	Not Detected	0.05	USEPA 525.2

U I	EMICAL TESTING : Water/ Re	siques <u>in</u> water			Y		
SL NO.	PARAMETER TESTED	UNIT OF MEASUREMENT	REQUIREMENT (ACCEPTABLE LIMIT)	PERMISSIBLE UMITIN THE ABSENCE OF ALTERNATE SOURCE	TEST RESULT	UMIT OF QUANTIFICATION (LOQ)	TEST METHOD
	Phorate Sulfone)						
88	POLYCHLORINATED BIPHENYLS (PCBs)					Active of the Original States	
	1) 2,4,4' - Trichlorobiphenyl	mg/l	OTO Max The oto of		Not Detected	0.00005	USEPA 525.2
	2) 2,2',5,5' - Tetrachlorobiphenyl	mg/l			Not Detected	0.00005	USEPA 525.2
	3) 2,2',4,5,5' - Pentachlorobiphenyl	mg/l			Not Detected	0.00005	USEPA 525.2
	4) 2,2',3,4,4',5' - Hexachlorobiphenyl	mg/l			Not Detected	0.00005	USEPA 525.2
	5) 2,2',4,4',5,5' - Hexachlorobiphenyl	mg/l			Not Detected	0.00005	USEPA 525.2
	6) 2,2',3,4,4',5,5' - Heptachlorobiphenyl	mg/l	1000 0		Not Detected	0.00005	USEPA 525.2
	7) PCB (sum of i - vi)	mq/l	Max 0.0005	Max 0.0005	Not Detected	gi cucata-	
9	POLYNUCLEAR AROMATIC HYDROCARBONS (PAH)					and the second second	
	1) Benzo (b) Flouranthene	mg/l			Not Detected	0.00001	USEPA 525.2
	2) Benzo (k) Flouranthene	mq/l			Not Detected	0.00001	USEPA 525.2
	 Indeno (1, 2, 3-cd) pyrene 	mg/l		-	Not Detected	0.00001	USEPA 525.2
	Benzo (ghi) pervlene	mq/l			Not Detected	0.00001	USEPA 525.2
	5) PAH (sum of i - iv)	mq/l	Max 0.0001	Max 0.0001	Not Detected	0.00001	
0	TOTAL ARSENIC (as As)	mg/l	Max 0.01	Max 0.01	< LOQ	0.0005	APHA 23rd Ed 3125
1	TOTAL CHROMIUM (as Cr)	mg/l	Max 0.05	Max 0.05	< LOQ	0.0005	APHA 23rd Ed 3125
2	TRIHALOMETHANES					LAE	R
	1) Chloroform	mg/l	Max 0.2	Max 0.2	Not Detected	0.00025	USERA 524.2
	2) Bromodichloromethane	mg/l	Max 0.06	Max 0.06	Not Detected		0 USEPA 524.2

ULR - TC633821000003408F						No. KH 41576 / 202	
I. CHE	MICAL TESTING : Water / Re	esidues in Water	r				
SL NO.	PARAMETER TESTED	UNIT OF MEASUREMENT	REQUIREMENT (ACCEPTABLE LIMIT)	PERMISSIBLE LIMIT IN THE ABSENCE OF ALTERNATE SOURCE	TEST RESULT	LIMIT OF QUANTIFICATION (LOQ)	TEST METHOD
	 Dibromochloromethane Bromoform 	mg/I mg/I	Max 0.1 Max 0.1	Max 0.1 Max 0.1	Not Detected	0.00025	USEPA 524.2 USEPA 524.2

Remarks : This sample conforms to the IS 10500:2012 with respect to the above parameters.

This Certificate is issued in lieu of Certificate No. KH 39062 / 2021 dated 01/02/2021 Certificate No. KH 39062 / 2021 stands cancelled.

Independent Water Purity Test Results indicate that water from the air produced by GTG Atmospheric Water Generators is pure, tasty, healthy and clean for human consumption.

The water quality meets or exceeds World Health Organization Standards.

Copyright Green Technology Global, Inc. 2023